| Enrollment No: Exam Seat No: |                                                                                                                                                                       |                                                        |                                 |      |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|------|--|--|
|                              | C.U.SHA                                                                                                                                                               | AH UNIVE                                               | CRSITY                          |      |  |  |
| Winter Examination-2015      |                                                                                                                                                                       |                                                        |                                 |      |  |  |
| Sub                          | ject Name: Data and File Struct                                                                                                                                       | ture                                                   |                                 |      |  |  |
| Sem                          | ject Code: 4TE03DFS1 ester: 3 Date: 10/12/2015 Tructions:                                                                                                             | Γime: 2:30 to 05:30                                    | Branch: B.Tech(CE,IT) Marks: 70 |      |  |  |
| (                            | <ol> <li>Use of Programmable calcula</li> <li>Instructions written on main a</li> <li>Draw neat diagrams and figure</li> <li>Assume suitable data if neede</li> </ol> | answer book are strictly<br>res (if necessary) at rigl | to be obeyed.                   |      |  |  |
|                              | Attempt the following question                                                                                                                                        | ns:                                                    |                                 | (14) |  |  |
| a)                           | Define: Data structure                                                                                                                                                |                                                        |                                 | ()   |  |  |
| <b>b</b> )                   | Define: time complexity and space complexity                                                                                                                          |                                                        |                                 |      |  |  |
| c)                           | Define: successor and predecessor                                                                                                                                     |                                                        |                                 |      |  |  |
| d)                           | Define: directed graph and weighted graph                                                                                                                             |                                                        |                                 |      |  |  |
| e)                           | Define: hash table and hash function.                                                                                                                                 |                                                        |                                 |      |  |  |
| f)                           | Difference between iteration and recursion.                                                                                                                           |                                                        |                                 |      |  |  |
| g)                           | Difference between linear and non-linear data structure.                                                                                                              |                                                        |                                 |      |  |  |
| <b>h</b> )                   | Difference between primitive and non-primitive data structure.                                                                                                        |                                                        |                                 |      |  |  |
| i)                           | Difference between static memory allocation and dynamic memory allocation.                                                                                            |                                                        |                                 |      |  |  |
| j)                           | Difference between sequential access file and random access file.  To implement Sparse matrix dynamically, the following data structure is used                       |                                                        |                                 |      |  |  |
| k)                           |                                                                                                                                                                       |                                                        |                                 |      |  |  |
|                              | (A) Trees                                                                                                                                                             | (B) Grap                                               | ·                               |      |  |  |
| 1)                           | (C) Priority Queues The balance factor for an AVL to                                                                                                                  | (D) Link                                               | XCU LISI                        |      |  |  |
| 1)                           | (A) $0.1$ or $-1$                                                                                                                                                     | (B) $-2$ ,-                                            | -1 or 0                         |      |  |  |
|                              | (C) 0,1 or 2                                                                                                                                                          | ` ' '                                                  | the above                       |      |  |  |
| m)                           | Graphs are represented using                                                                                                                                          | (D) All                                                | 110 100 vC                      |      |  |  |
| 111)                         | (A) Adjacency tree                                                                                                                                                    | (R) Adi                                                | acency linked list              |      |  |  |
|                              | (C) Adjacency graph                                                                                                                                                   | , ,                                                    | acency queue                    |      |  |  |

**(5)** 

The data structure needed to convert a recursion to an iterative procedure is n)

(A) Queue.

Q-1

(B) Graph.

(C) Stack.

(D) Tree.

## Attempt any four questions from Q-2 to Q-8

## Q-2 **Attempt all questions**

- What is recursion? Write a C program to solve Tower of Hanoi problem using recursion. **(5)** a)
- Write an algorithm for merge sort. b)
- Explain binary search algorithm with suitable example. c) **(4)**

| <b>Ų-</b> 3 |            | Attempt an questions                                                                                                         |               |  |
|-------------|------------|------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|             | a)         | Write an algorithm to insert an element into and delete from Circular Queue                                                  | <b>(5)</b>    |  |
|             | <b>b</b> ) | Do Evaluation of following expression using stack.                                                                           | <b>(5)</b>    |  |
|             |            | $((A/(B^{C}))+(D^{E}))-(A^{C})$                                                                                              |               |  |
|             |            | Where A=27, B=3, C=2, D=3, E=17.                                                                                             |               |  |
|             | c)         | What do you mean by priority queue? Explain it with suitable example.                                                        | <b>(4)</b>    |  |
| Q-4         | ,          | Attempt all questions                                                                                                        | ` /           |  |
| •           | a)         | Write the following algorithms for a Singly linked list.                                                                     | <b>(5)</b>    |  |
|             | ω)         | i) Insert an element at last position                                                                                        | (0)           |  |
|             |            | ii) Delete a specified element                                                                                               |               |  |
|             | <b>b</b> ) | Translate the following string into polish notation and trace the content of stack:                                          | <b>(5)</b>    |  |
|             | D)         | A * $(B + C * D) + E$                                                                                                        |               |  |
|             | <b>c</b> ) |                                                                                                                              |               |  |
| Q-5         | -)         | Attempt all questions                                                                                                        | <b>(4)</b>    |  |
| Q U         | a)         | What is Stack? Write algorithms for performing PUSH, POP, PEEP and CHANGE                                                    | <b>(5)</b>    |  |
|             | ω)         | operations on a stack.                                                                                                       |               |  |
|             | <b>b</b> ) | Define B-Tree. Construct B-tree of order 5 for following data.                                                               | <b>(5)</b>    |  |
|             | D)         | 1, 7, 6, 2, 11, 4, 8, 13, 10, 5, 19, 9, 18, 24, 3, 12, 14, 20, 21, 16                                                        | (5)           |  |
|             | c)         | Convert following Infix expression into Postfix and Prefix expression.                                                       | <b>(4)</b>    |  |
|             | C)         | i. $((A * B) + (C/D))$ ii. $((A * (B + C))/D)$                                                                               | (4)           |  |
| Q-6         |            | Attempt all questions                                                                                                        |               |  |
| Q-u         | a)         | Explain Threaded Binary Tree with suitable example.                                                                          | (5)           |  |
|             | <b>b</b> ) | Define AVL Tree. Construct AVL tree for following data                                                                       | <b>(5)</b>    |  |
|             | D)         | Jan, Feb, Mar, Apr, May, June, July, Aug, Sep, Oct, Nov, Dec.                                                                | (3)           |  |
|             | <b>a</b> ) |                                                                                                                              |               |  |
| Q-7         | c)         | Attempt all questions                                                                                                        | <b>(4)</b>    |  |
| Q-/         | ٥)         | What do you mean by Shortest Path? Find out shortest path for given Figure 1 using                                           | <i>(5</i> )   |  |
|             | a)         |                                                                                                                              | <b>(5)</b>    |  |
|             | <b>b</b> ) | Dijkstra's Algorithm. Consider source vertex is: b                                                                           | <b>(5</b> )   |  |
|             | <b>b</b> ) | Define sparse matrix. Briefly explain representation of sparse matrix with the help of link list and 3-Column form.          | <b>(5)</b>    |  |
|             | a)         |                                                                                                                              | (4)           |  |
|             | c)         | Define Binary Search Tree. Create the BST for the following data.                                                            | <b>(4)</b>    |  |
| $\sim$ 0    |            | 40, 65, 25, 55, 10,70,30,50,15,80,75                                                                                         |               |  |
| Q-8         | ۵)         | Attempt all questions  What do you many by MST? Find out MST for Figure 2 vains Prim's algorithm                             | <b>(5</b> )   |  |
|             | a)         | What do you mean by MST? Find out MST for Figure 2 using Prim's algorithm.                                                   | <b>(5)</b>    |  |
|             | <b>b</b> ) | Explain Graph Traversal Techniques.                                                                                          | <b>(5)</b>    |  |
|             | c)         | What is Augmented Data Structure? Explain its applications.                                                                  | <b>(4)</b>    |  |
|             |            |                                                                                                                              |               |  |
|             |            | $\begin{pmatrix} a \end{pmatrix} \qquad \begin{pmatrix} 10 \\ d \end{pmatrix} \qquad \begin{pmatrix} 12 \\ 12 \end{pmatrix}$ |               |  |
|             |            |                                                                                                                              | _             |  |
|             |            | 5 C 2 d                                                                                                                      | $\rightarrow$ |  |
|             | ( b        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                        | ( f           |  |
|             |            |                                                                                                                              |               |  |
|             |            | 4 5                                                                                                                          |               |  |
|             |            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                         |               |  |
|             |            |                                                                                                                              |               |  |

Page 2 || 2

Figure: 1

Figure: 2

